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In the last decades, transition-metal nanoparticles have proved
to be highly efficient catalytic systems in various reactions1 and are
particularly known as a relevant catalyst for arene hydrogenation.2

As they are thermodynamically unstable, the protective agents
should be chosen according to the nature of the metallic species
and the reaction media to avoid their aggregation.3 Among them,
ionic liquids are promising, as they can play the dual role of solvent
and protective agent.4 Rh, Ru, Ir, and Pd nanoparticles have been
easily prepared in various ionic liquids and have proved to be effi-
cient catalysts for olefin or arene hydrogenation reactions.5 Never-
theless, Rh(0) and Ir(0) nanocatalysts in simple imidazolium ionic
liquids tend to aggregate after reactions such as hydrogenation of
aromatic compounds or ketones with loss of catalytic activity.6 In
that context, more stable catalytic systems could be obtained by
the addition of an extra-protective agent, such as PVP7 or 1,10-phe-
nanthroline,8 which has proved to play a synergistic effect on the
activity and durability of the catalyst. Moreover, as the commonly
used organic stabilizers present low solubility in ionic liquids, new
ionic copolymers containing imidazolium units, which could act as
soluble bifunctional costabilizers when dissolved in ionic liquids,
have been designed.9 Recently, our team have described the stabil-
ization in ionic liquids of Rh(0) nanoparticles by N-donor ligands,
such as 2,20-bipyridine10 or triazine and pyrazine derivatives,11

and their application in arene hydrogenation. In order to improve
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the solubility of the 2,20-bipyridine ligand in ionic liquids and also
to induce new interactions between the protective agent and the
reaction media, we have designed an imidazolium-monofunction-
alized bipyridine 1 as precursor of a promising family of ligands
(Scheme 1). In this Letter, we report the synthesis of this new li-
gand 1 based on 2,20-bipyridine, which has proved to be efficient
for the stabilization of Rh(0) nanoparticles. Catalytic results in
terms of activity and selectivity in arene hydrogenation are com-
pared with 2,20-Bipyridine-protected Rh(0) colloids.

The new bipyridine ligand bearing an imidazolium tag 1 is
synthesized starting from 4,40-dimethyl-2,20-bipyridine 2 by a
procedure adapted from the literature.12,13 The route is described
in Scheme 2. Reaction of 4,40-dimethyl-2,20-bipyridine 2 with BuLi
in THF generates the monolithiated intermediate, which is
quenched with 1,7-dibromoheptane. The resulting 4-bromooc-
tyl-40-methyl-2,20-bipyridine 3 reacted with 1-methylimidazole
in toluene at 90 �C for 7 days to yield 4-(1-methylimidazolium-
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Scheme 1. Imidazolium-monofunctionalized bipyridine ligand 1.
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Scheme 2. Synthesis of imidazolium-functionalized bipyridine ligand 1. Reagents and conditions: (a) (i) diisopropylamine, BuLi, THF, �78 �C; (ii) 1,7-dibromoheptane, THF,
�78 �C and (b) methylimidazole, toluene, 90 �C, 7 days.
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3-yloctyl)-40-methyl-2,20-bipyridine bromide 1 with an overall
non-optimized yield of 36%.14

On the basis of the method previously developed for the synthe-
sis of Rh(0) nanoparticles stabilized by 2,20-bipyridine,10a the col-
loidal Rh(0) suspensions have been prepared by the chemical
reduction of rhodium trichloride salt with an excess of sodium
borohydride in a monophasic tetrahydrofuran-ionic liquid med-
ia.15 Immediately after reduction, the protective agent 1, dissolved
in THF, was added to the pre-stabilized metallic Rh(0) nanoparti-
cles, according to the procedure described in Scheme 3. The reduc-
tion, which is characterized by a color change from red to black,
has been performed in the open air and at room temperature
occurring instantaneously. A previously optimized molar ratio
[protective agent]/[M] of 0.5, which has already proved to be a
good compromise between stability and activity of the nanocata-
lyst, has been chosen and [BMI][PF6]16 has been used as a standard
ionic liquid.

The catalytic activity of the imidazolium-functionalized bipyri-
dine ligand 1-protected Rh(0) nanoparticles in [BMI][PF6] has been
evaluated in the hydrogenation of benzene and monofunctional-
ized derivatives according to the experimental conditions previ-
ously optimized (40 bar H2, 80 �C) in an arbitrarily chosen time
(15 h).17 The conversion was determined by gas chromatography
analysis. The catalytic results are summarized in Table 1 and com-
pared with the results already described for 2,20-Bipy.10a

The results clearly show that the catalytic performances of imi-
dazolium-functionalized bipyridine ligand 1-protected Rh(0) nano-
species in the hydrogenation of monofunctionalized aromatic
substrates are quite similar to those of 2,20-Bipyridine-stabilized
Rh(0) colloids with turnover number (TON) up to 300. The turnover
number (TON) was established according to the amount of rho-
dium introduced, taking into account the true number of active
metal sites. Thus, we could presume that TON may be underesti-
mated.18 In both cases, in the series of benzene, toluene, and
Rh(0)/ILRhCl3.3H2O
THF/[BMI][PF6]

NaBH4
T

Bipyridine-

Scheme 3. Synthesis of Rh(0) nanoparticles stabilized by bip

Table 1
Hydrogenation of arene derivatives with Rh(0) nanoparticles stabilized by imidazolium-fu

Entry Ligand Substrate Product

1 1 Benzene Cyclohexane
2 2,20-Bipy Benzene Cyclohexane
3 1 Toluene Methylcyclo
4 2,20-Bipy Toluene Methylcyclo
5 1 Ethylbenzene Ethylcyclohe
6 2,20-Bipy Ethylbenzene Ethylcyclohe
7 1 Styrene Ethylbenzen
8 2,20-Bipy Styrene Ethylbenzen

a Reaction conditions: Rh (3.8 � 10�5 mol), ligand (1.9 � 10�5 mol), [BMI][PF6] (2 mL)
b Determined by GC analysis.
c Turnover number defined as the number of moles of consumed H2 per mole of intro
ethylbenzene (entries 1–6), the decrease in catalytic activity is
typical of the influence of the increasing steric hindrance as usually
observed with other catalysts.19 As the colloidal suspensions are
always stable after the catalytic reaction, we could presume that
the complete hydrogenation of aromatic rings such as toluene (en-
try 3), ethylbenzene (entry 5), and styrene (entry 7) could be
achieved for longer reaction times and that the catalytic system
could be easily recycled by simple liquid–liquid extraction with
diethylether. Thus, similar catalytic activities have been obtained
for the two catalytic systems, showing that the imidazolium cation
tagged to the bipyridine has no significant influence on the sub-
strate approach on nanoparticles surface. Moreover, in the absence
of bipyridine ligand, styrene was totally converted in ethylcyclo-
hexane in 15 h; however, the colloidal suspension is unstable after
catalytic reaction with formation of aggregates.10a Thus, this preli-
minary work is promising as this new synthesized compound 1 of-
fers the opportunity to develop a new class of functionalized ionic
liquids by simple anion-exchange reactions, as recently described
in the literature.20 Moreover, according to the possibility to access
3,30- and 4,40-bipyridines and to modify the chain length, this class
of new ligands could significantly be increased.

In conclusion, a new imidazolium-monofunctionalized bipyri-
dine ligand 1 has been easily prepared in two steps starting from
commercial 4,40-dimethyl-2,20-bipyridine and has proved to be
an efficient protective agent for the stabilization of Rh(0) nanopar-
ticles in [BMI][PF6]. These ligand 1-stabilized Rh(0) colloids are
efficient and stable catalysts for arene hydrogenation in ionic liq-
uids. The use of ligands as nanoparticles protective agent is a
promising alternative to avoid aggregation in some hydrogenation
reactions. Finally, a new class of functionalized ionic liquids could
be easily prepared starting from this imidazolium-functionalized
bipyridine ligand 1 in order to improve, for example, the perfor-
mances of these nanocatalysts in terms of activity and selectivity
with asymmetric tags.
Rh(0)/1/[BMI][PF6]
HF

functionalized imidazolium IL 1

yridine-functionalized imidazolium IL 1 in ionic liquids.

nctionalized bipyridine ligand 1 or 2,20-bipyridinea

Conversionb (%) TONc

100 300
100 300

hexane 85 255
hexane 100 300
xane 60 180
xane 60 180
e (35)/ethylcyclohexane (65) 100 300
e (40)/ethylcyclohexane (60) 100 300

, substrate/Rh(0) (mol/mol) = 100, 40 bar H2, 80 �C, 15 h, stirred at 1500 rpm.

duced rhodium.
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